Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Chinese Journal of Analytical Chemistry ; 51(7), 2023.
Article in English | Scopus | ID: covidwho-2295202

ABSTRACT

Visual detection of nucleic acids is important to diagnose the serious acute infectious diseases such as coronavirus disease 2019 (COVID-19). During this pandemic, reliable visual detection kits have been in high demand for screening and prevention of the virus. While developing these visual detection kits, a real-time monitoring platform is usually applied to study the amplification and detection processes of nucleic acids and optimize the detecting conditions. Herein, we developed a real-time monitoring platform of colorimetric loop-mediated isothermal amplification (LAMP) to investigate the amplification and detection processes of nucleic acids. Using this platform, we could obtain the real-time amplification curves, and optimize the reaction temperature, color change, and detection time. Based on the optimized conditions, a visual detection kit for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was successfully developed with a sensitivity of 102 copies µL−1 in 12 min. This real-time monitoring platform has advantages of simple construction, steady performance, high sensitivity, and outstanding anti-pollution capability, and could replace the traditional colorimetric methods by photographing and reading values. This platform would accelerate the development of visual detection kits for colorimetric LAMP, help to explore the amplification and transcription of nucleic acids, and provide support for the prevention of emerging biological threats. © 2023

2.
Biosensors and Bioelectronics ; 221, 2023.
Article in English | Scopus | ID: covidwho-2240295

ABSTRACT

Here, we introduce a power-free foldable poly(methyl methacrylate) (PMMA) microdevice fully integrating DNA extraction, amplification, and visual detection, realized in novel dual modes – colorimetric and aggregate formation – using 4-Aminoantipyrine (4-AP) for monitoring pathogens. The microdevice contains two parts: reaction and detection zones. A sealing film was utilized to connect the two zones and make the device foldable. The FTA card was deposited in the reaction zone for DNA extraction, followed by loop-mediated isothermal amplification (LAMP) at 65 °C for 45 min. When the detection zone is folded toward the reaction zone, paper discs modified with 4-AP placed in the detection zone are delivered to the reaction zone. Specifically, in the presence of LAMP amplicons, 4-AP is oxidized into antipyrine red or generates aggregates by interacting with copper sulfate, forming copper hybrid nanostructure (Cu-hNs). In the absence of LAMP amplicons, 4-AP is not oxidized and maintains yellow color or fails to form aggregates. Furthermore, we introduced the ethidium homodimer-1 (EthD-1) to identify viable bacteria. EthD-1 penetrated the compromised membranes of nonviable cells and prevented further DNA amplification by intercalating with the DNA. In this way, only samples containing viable cells displayed color change or formed aggregates upon reaction with 4-AP. Using this method, SARS-CoV-2 RNA and Enterococcus faecium were identified by naked eye, with the limit of detection of 103 copies/μL and 102 CFU/mL, respectively, within 60 min. The introduced microdevice can be used for rapidly monitoring viable pathogens and controlling outbreaks of infectious disease in resource-limited settings. © 2022 Elsevier B.V.

3.
Anal Chim Acta ; 1248: 340938, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2242732

ABSTRACT

CRISPR-Cas12a (Cpf1) is widely used for pathogen detection. However, most Cas12a nucleic acid detection methods are limited by a PAM sequence requirement. Moreover, preamplification and Cas12a cleavage are separate. Here, we developed a one-step RPA-CRISPR detection (ORCD) system unrestricted by the PAM sequence with high sensitivity and specificity that offers one-tube, rapid, and visually observable detection of nucleic acids. In this system, Cas12a detection and RPA amplification are performed simultaneously, without separate preamplification and product transfer steps, and 0.2 copies/µL of DNA and 0.4 copies/µL of RNA can be detected. In the ORCD system, the activity of Cas12a is the key to the nucleic acid detection; specifically, reducing Cas12a activity increases the sensitivity of ORCD assay detection of the PAM target. Furthermore, by combining this detection technique with a nucleic acid extraction-free method, our ORCD system can be used to extract, amplify and detect samples within 30 min, as verified with tests of 82 Bordetella pertussis clinical samples with a sensitivity and specificity of 97.30% and 100% compared with PCR. We also tested 13 SARS-CoV-2 samples with RT-ORCD, and the results were consistent with RT-PCR.


Subject(s)
COVID-19 , Nucleic Acids , Humans , SARS-CoV-2 , RNA , Biological Assay , Nucleic Acid Amplification Techniques
4.
Front Microbiol ; 13: 1070831, 2022.
Article in English | MEDLINE | ID: covidwho-2237151

ABSTRACT

The coronavirus disease 2019 (COVID-19) caused by novel severe acute respiratory coronavirus 2 (SARS-CoV-2) has been rapidly spreading worldwide. Rapid and widespread testing is essential to promote early intervention and curb the ongoing COVID-19 pandemic. Current gold standard reverse transcription-polymerase chain reaction (RT-PCR) for detecting SARS-CoV-2 is restricted to professional laboratories and well-trained personnel, thus, limiting its widespread use in resource-limited conditions. To overcome these challenges, we developed a rapid and convenient assay using a versatile integrated tube for the rapid and visual detection of SARS-CoV-2. The reaction conditions of the method were optimized using SARS-CoV-2 RNA standards and the sensitivity and specificity were further determined. Finally, it was verified on clinical specimens. The assay was completed within 40 min, and the result was visible by the naked eye. The limits of detection (LODs) for the target ORF1ab and N genes were 50 copies/µl. No cross-reactivity was observed with the RNA standard samples of four respiratory viruses or clinical samples of common respiratory viral infections. Ninety SARS-CoV-2 positive and 30 SARS-CoV-2 negative patient specimens were analyzed. We compared these results to both prior and concurrent RT-PCR evaluations. As a result, the overall sensitivity and specificity for detection SARS-CoV-2 were 94.5 and 100.0%, respectively. Conclusion: The integrated tube assay has the potential to provide a simple, specific, sensitive, one-pot, and single-step assay for SARS-CoV-2.

5.
Adv Fiber Mater ; : 1-30, 2022 Aug 08.
Article in English | MEDLINE | ID: covidwho-2236785

ABSTRACT

Abstract: In the recent COVID-19 pandemic, World Health Organization emphasized that early detection is an effective strategy to reduce the spread of SARS-CoV-2 viruses. Several diagnostic methods, such as reverse transcription-polymerase chain reaction (RT-PCR) and lateral flow immunoassay (LFIA), have been applied based on the mechanism of specific recognition and binding of the probes to viruses or viral antigens. Although the remarkable progress, these methods still suffer from inadequate cellular materials or errors in the detection and sampling procedure of nasopharyngeal/oropharyngeal swab collection. Therefore, developing accurate, ultrafast, and visualized detection calls for more advanced materials and technology urgently to fight against the epidemic. In this review, we first summarize the current methodologies for SARS-CoV-2 diagnosis. Then, recent representative examples are introduced based on various output signals (e.g., colorimetric, fluorometric, electronic, acoustic). Finally, we discuss the limitations of the methods and provide our perspectives on priorities for future test development.

6.
Front Cell Infect Microbiol ; 12: 902914, 2022.
Article in English | MEDLINE | ID: covidwho-2154670

ABSTRACT

Identification of the main SARS-CoV-2 variants in real time is of interest to control the virus and to rapidly devise appropriate public health responses. The RT-qPCR is currently considered to be the reference method to screen SARS-CoV-2 mutations, but it has some limitations. The multiplexing capability is limited when the number of markers to detect increases. Moreover, the performance of this allele-specific method may be impacted in the presence of new mutations. Herein, we present a proof-of-concept study of a simple molecular assay to detect key SARS-CoV-2 mutations. The innovative features of the assay are the multiplex asymmetric one-step RT-PCR amplification covering different regions of SARS-CoV-2 S gene and the visual detection of mutations on a lateral flow DNA microarray. Three kits (Kit 1: N501Y, E484K; Kit 2: L452R, E484K/Q; Kit 3: K417N, L452R, E484K/Q/A) were developed to match recommendations for surveillance of SARS-CoV-2 variants between January and December 2021. The clinical performance was assessed using RNA extracts from 113 SARS-CoV-2-positive samples with cycle thresholds <30, and results demonstrated that our assay allows specific and sensitive detection of mutations, with a performance comparable to that of RT-qPCR. The VAR-CoV assay detected four SARS-CoV-2 targets and achieved specific and sensitive screening of spike mutations associated with the main variants of concern, with a performance comparable to that of RT-qPCR. With well-defined virus sequences, this assay can be rapidly adapted to other emerging mutations; it is a promising tool for variant surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Mutation , SARS-CoV-2/genetics
7.
Sens Actuators B Chem ; 377: 133009, 2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2122810

ABSTRACT

Point of care (POC) diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are particularly significant for preventing transmission of coronavirus disease 2019 (COVID-19) by any user at any given time and place. CRISPR/Cas-assisted SARS-CoV-2 assays are viewed as supplemental to RT-PCR due to simple operation, convenient use and low cost. However, most current CRISPR molecular diagnostics based on fluorescence measurement increased the difficulty of POC test with need of the additional light sources. Some instrument-free visual detection with the naked eye has limitations in probe universality. Herein, we developed a universal, rapid, sensitive and specific SARS-CoV-2 POC test that combines the outstanding DNase activity of Cas12a with universal AuNPs strand-displacement probe. The oligo trigger, which is the switch the AuNPs of the strand-displacement probe, is declined as a result of Cas12a recognition and digestion. The amount of released AuNPs produced color change which can be visual with the naked eye and assessed by UV-Vis spectrometer for quantitative detection. Furthermore, a low-cost hand warmer is used as an incubator for the visual assay, enabling an instrument-free, visual SARS-CoV-2 detection within 20 min. A real coronavirus GX/P2V instead of SARS-CoV-2 were chosen for practical application validation. After rapid virus RNA extraction and RT-PCR amplification, a minimum of 2.7 × 102 copies/mL was obtained successfully. The modular design can be applied to many nucleic acid detection applications, such as viruses, bacteria, species, etc., by simply modifying the crRNA, showing great potential in POC diagnosis.

8.
Biosensors and Bioelectronics ; : 114904, 2022.
Article in English | ScienceDirect | ID: covidwho-2104439

ABSTRACT

Here, we introduce a power-free foldable poly(methyl methacrylate) (PMMA) microdevice fully integrating DNA extraction, amplification, and visual detection, realized in novel dual modes–colorimetric and aggregate formation–using 4-aminoantipyrine (4-AP) for the first time for monitoring pathogens. The microdevice contains two parts: reaction and detection zones. A sealing film was utilized to connect the two zones and make the device foldable. The FTA card was deposited in the reaction zone for DNA extraction, followed by loop-mediated isothermal amplification (LAMP) at 65 °C for 45 min. When the detection zone is folded toward the reaction zone, paper discs modified with 4-AP placed in the detection zone are delivered to the reaction zone. Specifically, in the presence of LAMP amplicons, 4-AP is oxidized into red antipyrine or generates aggregates by interacting with copper sulfate, forming copper hybrid nanostructure (Cu-hNs). In the absence of LAMP amplicons, 4-AP is not oxidized and maintains yellow color or fails to form aggregates. Furthermore, we introduced the ethidium homodimer-1 (EthD-1) to identify viable bacteria. EthD-1 penetrated the compromised membranes of nonviable cells and prevented further DNA amplification by intercalating with the DNA. In this way, only samples containing viable cells displayed color change or formed aggregates upon reaction with 4-AP. Using this method, SARS-CoV-2 RNA and Enterococcus faecium were identified by naked eye, with the limit of detection of 103 copies/μL and 102 CFU/mL, respectively, within 60 min. The introduced microdevice can be used for rapidly monitoring viable pathogens and controlling outbreaks of infectious disease in resource-limited settings.

9.
Talanta ; 252, 2023.
Article in English | Web of Science | ID: covidwho-2069714

ABSTRACT

Since the last century, animal viruses have posed great threats to the health of humans and the farming industry. Therefore, virus control is of great urgency, and regular, timely, and accurate detection is essential to it. Here, we designed a rapid on-site visual data-sharing detection method for the Newcastle disease virus with smartphone recognition-based immune microparticles. The detection method we developed includes three major modules: preparation of virus detection vectors, sample detection, and smartphone image analysis with data upload. First, the hydrogel microparticles containing active carboxyl were manufactured, which coated nucleocapsid protein of NDV. Then, HRP enzyme-labeled anti-NP nanobody was used to compete with the NDV antibody in the serum for color reaction. Then the rough detection results were visible to the human eyes according to the different shades of color of the hydrogel microparticles. Next, the smartphone application was used to analyze the image to determine the accurate detection results according to the gray value of the hydrogel microparticles. Meanwhile, the result was automatically uploaded to the homemade cloud system. The total detection time was less than 50 min, even without trained personnel, which is shorter than conventional detection methods. According to experimental results, this detection method has high sensitivity and accuracy. And especially, it uploads the detection information via a cloud platform to realize data sharing, which plays an early warning function. We anticipate that this rapid on-site visual data-sharing detection method can promote the development of virus selfchecking at home.

10.
Microbiol Spectr ; 10(5): e0271422, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2053142

ABSTRACT

Monkeypox virus (MPXV) is a human pathogenic virus that belongs to the genus Orthopoxvirus. In 2022, MPXV caused an unprecedented number of infections in many countries. As it is difficult to distinguish MPXV from other pathogens by its symptoms in the early stage of infection, a rapid and reliable assay for MPXV detection is needed. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay for the specific detection of MPXV and evaluated its application in simulated clinical samples. The A27L-1 and F3L-1 primer sets were identified as the optimal primers, and 63°C was the most appropriate reaction temperature for sequence amplification. The detection limits of the LAMP assay using primer sets A27L-1 and F3L-1 were both 20 copies/reaction mixture, which were >100-fold higher in terms of sensitivity, compared with conventional PCR. The LAMP assay findings were negative for all 21 non-MPXV pathogens, confirming the high specificity of our assay. All three types of simulated clinical samples were clearly identified by our LAMP assay, and the detection limits were consistent with the sensitivity results, indicating efficient clinical sample identification. Our rapid and reliable MPXV LAMP assay could be useful for MPXV detection and on-site diagnosis, especially in primary hospitals and rural areas. IMPORTANCE MPXV outbreaks rapidly grew in the first half of 2022, and this virus has been recognized as an increasing public health threat, particularly in the context of the COVID-19 pandemic. Thus, developing reliable and fast detection methods for MPXV is necessary.


Subject(s)
COVID-19 , Monkeypox , Humans , Monkeypox virus/genetics , Pandemics , Sensitivity and Specificity , Monkeypox/diagnosis , Monkeypox/epidemiology
11.
Environmental Science-Nano ; 2022.
Article in English | Web of Science | ID: covidwho-2004800

ABSTRACT

Nanoparticle (NP)-based colorimetric methods are extensively used for the rapid detection of environmental contaminants, different substances and SARS-CoV-2 in various fields such as environmental science, virology, pollution research, and the food industry, as well as biomedicine. Colorimetric sensors exhibit high sensitivity and selectivity, are easy to handle, portable, safe for screening purposes and can be visualized by the naked eye. Herein, the colorimetric sensing approaches of the two most commonly used metallic NPs, i.e., gold (Au) and silver (Ag), and their physicochemical methods are discussed, as metallic NPs show good efficiency due to their unique optical and chemical properties. This review summarizes the progress on colorimetric sensors based on metallic NPs as sensors and their applications, elucidating the utility and superior features of metallic-NP-based colorimetric assay for the detection of different environmental contaminants, biomolecules and SARS-CoV-2 in the environmental as well as human biological samples. An outlook with respect to the trends and future development of the proposed sensors is also provided.

12.
Mikrochim Acta ; 189(8): 268, 2022 07 04.
Article in English | MEDLINE | ID: covidwho-1919801

ABSTRACT

COVID-19 necessitates the development of reliable and convenient diagnostic tools. In this work, a facile 3D-printed smartphone platform was constructed that achieved reliable visual detection of SARS-CoV-2 by eliminating the effect of ambient light and fixing the camera position relative to the sample. The oligonucleotide probe is modified with orange-red-emitting TAMRA working as an internal standard and green-emitting FAM serving as a sensitive sensing agent. Under 365-nm UV excitation, the emission wavelengths of TAMRA and FAM are 580 nm and 518 nm, respectively. When the probes interact with the targets, the green fluorescence gradually restores while the orange-red fluorescence remains stable. Thus, a striking color transition from orange-red to green could be observed by the naked eye. The detection limit of SARS-CoV-2 nucleic acid is 0.23 nM, and the entire process of color change could be completed in 25 min. Furthermore, the RGB value analysis of the sample solution was conducted using a smartphone for reliable and reproducible discrimination of SARS-CoV-2. The proposed smartphone platform might establish a general method for visual detection of SARS-CoV-2 nucleic acid as well as other virus-related diseases.


Subject(s)
COVID-19 , Smartphone , COVID-19/diagnosis , Fluorescence , Humans , Oligonucleotide Probes , SARS-CoV-2
13.
Chemosensors ; 10(4):17, 2022.
Article in English | Web of Science | ID: covidwho-1820181

ABSTRACT

Accurate and timely detection of infectious pathogens is urgently needed for disease treatment and control of possible outbreaks worldwide. Conventional methods for pathogen detection are usually time-consuming and labor-intensive. Novel strategies for the identification of pathogenic nucleic acids are necessary for practical application. The advent of microfluidic technology and microfluidic devices has offered advanced and miniaturized tools to rapidly screen microorganisms, improving many drawbacks of conventional nucleic acid amplification-based methods. In this review, we summarize advances in the microfluidic approach to detect pathogens based on nucleic acid amplification. We survey microfluidic platforms performing two major types of nucleic acid amplification strategies, namely, polymerase chain reaction (PCR) and isothermal nucleic acid amplification. We also provide an overview of nucleic acid amplification-based platforms including studies and commercialized products for SARS-CoV-2 detection. Technologically, we focus on the design of the microfluidic devices, the selected methods for sample preparation, nucleic acid amplification techniques, and endpoint analysis. We also compare features such as analysis time, sensitivity, and specificity of different platforms. The first section of the review discusses methods used in microfluidic devices for upstream clinical sample preparation. The second section covers the design, operation, and applications of PCR-based microfluidic devices. The third section reviews two common types of isothermal nucleic acid amplification methods (loop-mediated isothermal amplification and recombinase polymerase amplification) performed in microfluidic systems. The fourth section introduces microfluidic applications for nucleic acid amplification-based detection of SARS-CoV-2. Finally, the review concludes with the importance of full integration and quantitative analysis for clinical microbial identification.

14.
Biosensors (Basel) ; 12(3)2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-1760369

ABSTRACT

Campylobacter jejuni is one of the most important causes of food-borne infectious disease, and poses challenges to food safety and public health. Establishing a rapid, accurate, sensitive, and simple detection method for C. jejuni enables early diagnosis, early intervention, and prevention of pathogen transmission. In this study, an immunocapture magnetic bead (ICB)-enhanced loop-mediated isothermal amplification (LAMP) CRISPR/Cas12a method (ICB-LAMP-CRISPR/Cas12a) was developed for the rapid and visual detection of C. jejuni. Using the ICB-LAMP-CRISPR/Cas12a method, C. jejuni was first captured by ICB, and the bacterial genomic DNA was then released by heating and used in the LAMP reaction. After the LAMP reaction, LAMP products were mixed and detected by the CRISPR/Cas12a cleavage mixture. This ICB-LAMP-CRISPR/Cas12a method could detect a minimum of 8 CFU/mL of C. jejuni within 70 min. Additionally, the method was performed in a closed tube in addition to ICB capture, which eliminates the need to separate preamplification and transfer of amplified products to avoid aerosol pollution. The ICB-LAMP-CRISPR/Cas12a method was further validated by testing 31 C. jejuni-positive fecal samples from different layer farms. This method is an all-in-one, simple, rapid, ultrasensitive, ultraspecific, visual detection method for instrument-free diagnosis of C. jejuni, and has wide application potential in future work.


Subject(s)
Campylobacter jejuni , CRISPR-Cas Systems , Magnetic Phenomena , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques/methods
15.
Indian J Med Res ; 155(1): 148-155, 2022 01.
Article in English | MEDLINE | ID: covidwho-1753753

ABSTRACT

Background & objectives: The pandemic of SARS-COV-2 began in Wuhan, China in December 2019 and has caused more than 101 million cases worldwide. Diagnostic technologies possessing sensitivity and specificity equivalent to real-time reverse-transcriptase polymerase chain reaction (rRT-PCR) assays are needed to ramp up testing capacity in most countries. Newer platforms need to be technically less demanding, require minimum equipment and reduce turn-around time for reporting results. The objective of this study was to exploit loop-mediated isothermal amplification (LAMP) for the detection of SARS-CoV-2 and evaluate its performance by comparison with rRT-PCR. Methods: Reverse-transcription LAMP (RT-LAMP) assay primers were designed to detect envelop (E) and nucleocapsid (N) genes of SARS-CoV-2. Positive control RNA was prepared by in vitro transcription of E and N genes clones. RT-LAMP amplification reactions were incubated at 65°C for 30 min. Results were recorded visually. RT-LAMP results were evaluated by comparing the results obtained with a commercial rRT-PCR kit. Results: The RT-LAMP assay for E and N genes was carried out in separate tubes. RT-LAMP detected about 40 copies of SARS-CoV-2 RNA per reaction. A total of 253 throat swabs were tested using the RT-LAMP assay. The overall diagnostic sensitivity and specificity of the LAMP assay were 98.46 and 100 per cent, respectively, as compared to the rRT-PCR. Interpretation & conclusions: SARS-CoV-2 RT-LAMP assay was designed, standardized and evaluated. The assay showed diagnostic sensitivity and specificity equivalent to rRT-PCR assays. The assay will be useful to increase testing capacity for the detection of SARS-CoV-2 in the country.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
16.
Bioact Mater ; 6(12): 4580-4590, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1230373

ABSTRACT

CRISPR-Cas12a system has been shown promising for nucleic acid diagnostics due to its rapid, portable and accurate features. However, cleavage of the amplicons and primers by the cis- and trans-activity of Cas12a hinders the attempts to integrate the amplification and detection into a single reaction. Through phosphorothioate modification of primers, we realized onepot detection with high sensitivity using plasmids of SARS-CoV-2, HPV16 and HPV18. We also identified the activated Cas12a has a much higher affinity to C nucleotide-rich reporter than others. By applying such reporters, the reaction time required for a lateral-flow readout was significantly reduced. Furthermore, to improve the specificity of the strip-based assay, we created a novel reporter and, when combined with a customized gold-nanopaticle strip, the readout was greatly enhanced owing to the elimination of the nonspecific signal. This established system, termed Targeting DNA by Cas12a-based Eye Sight Testing in an Onepot Reaction (TESTOR), was validated using clinical cervical scrape samples for human papillomaviruses (HPVs) detection. Our system represents a general approach to integrating the nucleic acid amplification and detection into a single reaction in CRISPR-Cas systems, highlighting its potential as a rapid, portable and accurate detection platform of nucleic acids.

17.
Biosens Bioelectron ; 172: 112766, 2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-893625

ABSTRACT

The 2019 novel coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected all aspects of human life. Rapid, accurate, sensitive and user friendly detection method is urgently needed to facilitate early intervention and control the spread of SARS-CoV-2. Here, we propose a one-pot visual SARS-CoV-2 detection system named "opvCRISPR" by integrating reverse transcription loop-mediated isothermal amplification (RT-LAMP) and Cas12a cleavage in a single reaction system. We demonstrate that the collateral activity against single-stranded DNA (ssDNA) reporters of activated Cas12a triggered by RT-LAMP amplicon increases detection sensitivity and makes detection results observable with naked eye. The opvCRISPR enables detection at nearly single molecule level in 45 min. We validate this method with 50 SARS-CoV-2 potentially infected clinical samples. The opvCRISPR diagnostic results provide 100% agreement with the Centers for Disease Control and Prevention (CDC)-approved quantitative RT-PCR assay. The opvCRISPR holds great potential for SARS-CoV-2 detection in next-generation point-of-care molecular diagnostics.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , CRISPR-Cas Systems , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , Base Sequence , COVID-19/virology , COVID-19 Nucleic Acid Testing/instrumentation , COVID-19 Nucleic Acid Testing/statistics & numerical data , Humans , Molecular Diagnostic Techniques/instrumentation , Molecular Diagnostic Techniques/statistics & numerical data , Nucleic Acid Amplification Techniques/instrumentation , Nucleic Acid Amplification Techniques/statistics & numerical data , Pandemics , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
18.
Biosens Bioelectron ; 169: 112642, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-778505

ABSTRACT

The outbreaks of the infectious disease COVID-19 caused by SARS-CoV-2 seriously threatened the life of humans. A rapid, reliable and specific detection method was urgently needed. Herein, we reported a contamination-free visual detection method for SARS-CoV-2 with LAMP and CRISPR/Cas12a technology. CRISPR/Cas12a reagents were pre-added on the inner wall of the tube lid. After LAMP reaction, CRISPR/Cas12a reagents were flowed into the tube and mixed with amplicon solution by hand shaking, which can effectively avoid possible amplicon formed aerosol contamination caused by re-opening the lid after amplification. CRISPR/Cas12a can highly specific recognize target sequence and discriminately cleave single strand DNA probes (5'-6FAM 3'-BHQ1). With smart phone and portable 3D printing instrument, the produced fluorescence can be seen by naked eyes without any dedicated instruments, which is promising in the point-of-care detection. The whole amplification and detection process could be completed within 40 min with high sensitivity of 20 copies RNA of SARS-CoV-2. This reaction had high specificity and could avoid cross-reactivity with other common viruses such as influenza virus. For 7 positive and 3 negative respiratory swab samples provided by Zhejiang Provincial Center for Disease Control and Prevention, our detection results had 100% positive agreement and 100% negative agreement, which demonstrated the accuracy and application prospect of this method.


Subject(s)
Betacoronavirus/isolation & purification , Biosensing Techniques/methods , Coronavirus Infections/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , Point-of-Care Systems , Betacoronavirus/genetics , Biosensing Techniques/instrumentation , COVID-19 , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Coronavirus Infections/virology , Equipment Design , Fluorescence , Humans , Molecular Diagnostic Techniques/instrumentation , Nucleic Acid Amplification Techniques/instrumentation , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Sensitivity and Specificity , Smartphone
19.
BMC Vet Res ; 16(1): 130, 2020 May 07.
Article in English | MEDLINE | ID: covidwho-197648

ABSTRACT

BACKGROUND: Porcine Deltacoronavirus (PDCoV) is a newly emerging Coronavirus that was first identified in 2012 in Hong Kong, China. Since then, PDCoV has subsequently been reported worldwide, causing a high number of neonatal piglet deaths and significant economic losses to the swine industry. Therefore, it is necessary to establish a highly sensitive and specific method for the rapid diagnosis of PDCoV. RESULTS: In the present study, a highly sensitive and specific diagnostic method using recombinase polymerase amplification combined with a lateral flow dipstick (LFD-RPA) was developed for rapid and visual detection of PDCoV. The system can be performed under a broad range of temperature conditions from 10 to 37 °C, and the detection of PDCoV can be completed in 10 min at 37 °C. The sensitivity of this assay was 10 times higher than that of conventional PCR with a lower detection limit of 1 × 102 copies/µl of PDCoV. Meanwhile, the LFD-RPA assay specifically amplified PDCoV, while there was no cross-amplification with other swine-associated viruses, including Porcine epidemic diarrhea virus (PEDV), Transmissible gastroenteritis virus (TGEV), Porcine kobuvirus (PKoV), Foot and mouth disease virus (FMDV), Porcine reproductive and respiratory syndrome virus (PRRSV), Porcine circovirus type 2 (PCV2), Classical swine fever virus (CSFV) and Seneca valley virus (SVV). The repeatability of the test results indicated that this assay had good repeatability. In addition, 68 clinical samples (48 fecal swab specimens and 20 intestinal specimens) were further tested by LFD-RPA and RT-PCR assay. The positive rate of LFD-RPA clinical samples was 26.47% higher than that of conventional PCR (23.53%). CONCLUSIONS: The LFD-RPA assay successfully detected PDCoV in less than 20 min in this study, providing a potentially valuable tool to improve molecular detection for PDCoV and to monitor the outbreak of PDCoV, especially in low-resource areas and laboratories.


Subject(s)
Coronavirus/isolation & purification , Polymerase Chain Reaction/methods , Recombinases/metabolism , Serologic Tests/veterinary , Animals , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity , Serologic Tests/methods , Swine , Swine Diseases/virology
SELECTION OF CITATIONS
SEARCH DETAIL